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Classical statistical mechanics of a few-body interacting spin model
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We study the emergence of Boltzmann’s law for the ‘‘single-particle energy distribution’’ in a closed system
of interacting classical spins. It is shown that for a large number of particles Boltzmann’s law may occur, even
if the interaction is very strong. Specific attention is paid to classical analogs of the average shape of quantum
eigenstates and ‘‘local density of states,’’ which are very important in quantum chaology. Analytical predic-
tions are then compared with numerical data.

PACS number~s!: 05.45.2a
m
Th
s
a
e

ao
s
m

an
or
sy

an
s

ne
o
ar
e
o-
to
y
a

ith

th

e

o
of
th

r
e-
b

of

d

ts in
of

is
at
the
l
tion
tical

in-
.

to
he
otic
s to
a-
nce
the
gen-
or

a

sed

of-
lly,
-

m-

ys-
g.
I. INTRODUCTION

Chaotic properties of few-degrees-of-freedom syste
have attracted much attention during the last years.
knowledge and classification of chaotic dynamical system
now extremely accurate, if compared with the state of the
at the beginning of the century. On the other hand, conv
tional statistical mechanics was born long before the ch
ogy of dynamical systems. It is well known that, in contra
to chaotic dynamical systems with few degrees of freedo
for the onset of statistical equilibrium in systems with
infinitely large number of particles neither nonlinearity n
interaction between particles is needed. Indeed, in such
tems the thermodynamic limit~infinite number of particles
N→`) leads to the statistical behavior of a system since
weak interaction~with an environment or between particle!
gives rise to mixing properties and onset of chaos.

Although statistical mechanics has undoubtedly obtai
results in many different fields, fundamental questions ab
statistical descriptions of systems with finite number of p
ticles are still open@1#. It is clear that in such systems th
interparticle interaction is crucial; however, its role in pr
ducing chaos or ergodicity is still not understood. Due
computing difficulties and lack of theoretical studies, man
body chaotic systems have been scarcely investigated,
little is known about them.

Recently, an approach to quantum isolated systems w
finite number of interacting particles was developed@2–6#.
The goal of this approach was a direct relation between
average shape of exact eigenstates (F function!, and the dis-
tribution of occupation numbersns of single-particle levels.
This relation shows that there is no need to know the eig
states exactly; instead, if these eigenstates are chaotic~ran-
dom superposition of a very large number of components
basis states!, the F function absorbs the statistical effects
interaction between particles and determines the form of
ns distribution. The approach was mainly developed fo
model with completely random two-body interaction b
tween a finite number of Fermi particles; however, it can
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also applied to dynamical models with chaotic behavior.
One of the few dynamical models studied with the use

this approach was a system of two interacting spins@7,8#.
The most interesting result obtained numerically in Ref.@7#
is that the distribution of occupation numbers~even for two
interacting particles! in the chaotic region can be describe
in the form of the standard Bose-Einstein~BE! distribution
~only symmetric states have been considered which resul
the BE statistics!. It was shown that the statistical effects
the interaction lead to an increase of temperature which
related to the BE distribution. Also, it was discovered th
the canonical distribution is recovered if one randomizes
nonzero elementsof the interactionV, keeping the dynamica
constraints of the model. This means that random interac
plays the role of a heat bath, and allows one to use statis
and thermodynamical descriptions for isolated systems.

In order to extend the approach of Refs.@2–6# to classical
dynamical systems with a large number of particles, we
troduce the model ofN interacting spins in one dimension
Due to the well-defined classical limit, it is first of interest
explore similar problems in the classical counterpart. T
problem of a quantum-classical correspondence for cha
systems with a large number of interacting particles seem
us extremely important in view of many physical applic
tions. In this paper we mainly concentrate on the occurre
of Boltzmann’s law, and on the classical counterparts of
quantum local density of states and the shapes of the ei
functions. The investigation of the analogous Fermi-Dirac
Bose-Einstein statistics in a quantized version of such
model is reserved for future work@9#.

Our investigation is complementary to the approach ba
on the so-calleddynamicaltemperature@10–12#, introduced
for the study of the statistical properties of few-degrees-
freedom classical models with chaotic behavior. Specifica
our interest is in the notion ofstatistical temperature associ
ated with Boltzmann’s distribution~if any! for single-particle
energy. The relation between statistical and dynamical te
peratures represents an open and interesting question.

II. MODEL OF INTERACTING SPINS

Our purpose is to investigate a few-body dynamical s
tem from a statistical mechanics point of view. Followin

e
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previous works on the two-particle spin problem@8,7#, we
consider the Hamiltonian

H5B(
i 51

N

Si
z1J(

i 51

N

SW i•SW i 11 , ~1!

which is known as the one-dimensional Heisenberg mode
a magnetic field; see, for instance, Ref.@13#. HereSW i are spin
vectors, and, for the sake of definiteness, we take perio
boundary conditionsSW 15SW N11. The classical version is a
solvable model from the statistical point of view~namely,
when the number of particlesN→`; see Ref.@14#!.

Instead, here we are interested in a dynamical appro
in particular for a small number of particles, when the us
statistical approach is at least questionable. In what follo
we shall consider a more simple version of the class
Heisenberg model, which is described by the Hamiltonia

H5H01V5B(
i 51

N

Si
z1J(

i 51

N

Si
ySi 11

y , ~2!

whereN.2 is the number of spins in the chain. We do th
in order to simplify analytical calculations. The equations
motion can be written in the usual way,

dSW

dt
5$H,SW %, ~3!

where$,% are Poisson brackets~see Refs.@15,16# for similar
dynamical models!. Constants of motion are the energyE

and the magnitude of the angular momentauSW i u5s ~the latter
is assumed to be the same for each spin!. Without loss of
generality, we can puts51.

Contrary to the common viewpoint~spin Hamiltonian
plus a magnetic field as a perturbation! we consider the
‘‘magnetic’’ part as an unperturbed Hamiltonian. Indeed,
are interested in models which can generally be expresse
a sum of single-particle Hamiltonians, this feature not be
shared by the perturbationV. Therefore, the Heisenberg ke
nel (J(SW iSW i 11) will be considered as a perturbation betwe
nearest-neighbor spins.

The unperturbed Hamiltonian is integrable, and the so
tion of the unperturbed equations of motion can be writ
down at a glance. It should be pointed out that the pertur
tion itself is not chaotic. Indeed, it can be verified nume
cally that two close trajectories diverge only linearly in tim
when B50. This means that the maximal Lyapunov exp
nent is zero for any choice of the initial conditions. On t
other hand, the same Lyapunov analysis shows that the
Hamiltonian, for generic values of the couplingJ and for
energy values in the middle of the band (E;0), is chaotic.
Maximal Lyapunov exponents, as a function of time for d
ferent J and B values and fixed energyE , are shown in
Fig. 1.

As one can see, the Lyapunov exponents approach
when B decreases, orJ increases. On the other hand, f
fixed J, and B different from zero, the region where th
maximal Lyapunov exponent approaches zero is close to
in
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edge of the energy spectrum~see Fig. 2!. Maximal Lyapunov
exponents have been calculated using the standard re
@17#.

Besides integrability, the unperturbed HamiltonianH0, in
the limit N→`, has good statistical properties which w
exploit in Sec. III. It is indeed interesting to compare o
results with those obtained with the standard statistical
proach.

III. IDEAL GAS OF SPINS

This particular choice of the model, being extreme
simple, allows an analytical treatment of the caseN→` in
both unperturbed and perturbed cases. Let us first analyz
unperturbed HamiltonianH0. This should be thought of as
model of a very weakly interacting system. In what follow
without loss of generality, we assumeB51. The microca-
nonical ensemble represents the most natural way to ana
an isolated system ofN spins. One goal is to find the ther
modynamical temperature as it depend on the energyE. An-
other is to study the single-particle energy distribution a

FIG. 1. Maximal Lyapunov exponents as a function of time f
E522 andJ51 andB50.5 and 1, as indicated in the picture. Th
system hasN54 spins.

FIG. 2. ~a! Maximal Lyapunov exponents as a function of tim
for J51, B51, and different energyE as indicated in the text.
Simulations have been made with four spins.
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the conditions under which it can be assimilated to the B
zmann distribution.

The temperatureT5b21 (kB51 hereafter! can be de-
fined via the microcanonical ensemble

bmc5
dS

dE
, ~4!

where S is the entropy. For a sufficiently large number
particles this can in turn be defined asS5 logr(E). Here
r(E) can be defined through the phase space volume@18#. If
the motion ofN spins is ergodic, each of them covers un
formly the unit three-dimensional~3D! sphere. Therefore
each component ofSW has a uniform probability density func
tion in the interval@21,1# @19#; that is,

p~h!5
]P~Si

z<h!

]h
5H 1/2 when 21<h<1

0 elsewhere, ~5!

and the same for the other componentsSi
y andSi

x . Here the
quantity P(x<a) gives the probability that the continuou
random variablex has values less thana. In the same way,
the density of states can be evaluated as a probability:

r0~E0 ,N!5

]PS (
i 51

N

Si
z<E0D

]E0
. ~6!

The distribution of the sum ofN independent random vari
ables can be obtained using the central limit theorem~when
N→`)

r0~E0 ,N!.
1

s0A2p
expS 2

E0
2

2s0
2D , ~7!

where

s0
25

N

3
. ~8!

As a result, from Eq.~4! one obtains an unusualmicroca-
nonical relationfor the energy vs inverse temperature@14#:

bmc52
3E0

N
. ~9!

In principal, the energyE0 ranges fromEmin,0 to Emax5
2Emin.0; therefore, in this model negative temperatures
also possible. One should note that typical physical syst
have densities of states increasing with energy, thus giv
positive temperature. For this reason, in what follows,
consider only positive temperatures which correspond to
left ~part of the symmetric! energy spectrum,E0,0.

It is important to note that the density of states can also
obtained for finite system of particles without invoking ce
tral limit theorems. This can be done by a direct integrat
over the phase space volume,
t-

e
s
g

e
e

e

n

r0~E0 ,N!5E
2`

1`

dS1
z p~S1

z!•••

3E
2`

1`

dSN
z p~SN

z !dS (
i 51

N

Si
z2E0D

5E
2`

1` 1

2p
dl e2 ilE0F E

21

1

dx
1

2
eilxGN

5
N

2N (
k50

M

~21!k
~N1E022k!N21

k! ~N2k!!
, ~10!

whereM is the integer part of (E01N)/2.
Let us now concentrate on the ‘‘single-particle energy d

tribution’’ ~SPE distribution! defined as:

n0~huE0!5N

]PS S1
z<hU(

i 51

N

Si
z5E0D

]h
, ~11!

whereP(x<auy5b) is the conditional probability.
This quantity is the classical analog of the quantumdis-

tribution of occupation numbers, which gives the number o
particles occupying a single-particle level with energyE0.
Correspondingly, the above classical distribution determi
the probability thatany of N spins has the energyE0. From
this definition, it is clear that the SPE distribution@Eq. ~11!#
is normalized to the total number of particles, and it defin
the mean energy ofall particles, or, the same, the mean to
energy of the system. In this way, one can treat an isola
model in the same way as the model in contact with a h
bath ~see details in Refs.@8,6#!.

It is well known that forN→` the single-particle energy
should be distributed according to Boltzmann’s law. Und
suitable conditions this holds true in this model, too. Inde
one obtains

n0~huE0!5N

pS S1
z5h,(

i 51

N

Si
z5E0D

r0~E0 ,N!

5N

pS S1
z5h,(

i 52

N

Si
z5E02hD

r0~E0 ,N!

5N

p~S1
z5h!pS (

i 51

N21

Si
z5E0D

r0~E0 ,N!

5N
r0~h,1!r0~E02h,N21!

r0~E0 ,N!
, ~12!

where the last equality is due to the independence ofSi
z . The

quantityp(S1
z5h,( i 51

N21Si
z5E0) defines the joint probability

density function.
Substituting expression~7! into the above relation, it is

easy to obtain~in the limit of a very largeN@1)
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n0~huE0!.expS 2
3E0

2

2N~N21!
2

3h2

2~N21!
1

3E0h

N21D ,

~13!

whereE0,0.
Obviously, a correspondent expression for any numbe

particles can be obtained, using the exact value of the un
turbed density of states Eq.~10!. In Fig. 3 we show the
infinite ~Gaussian! approximation (N→`) and the exact
one, computed for two different energy values. As one
see, while in the middle of the spectrum the distributions
almost the same, close to the band edges they are remar
different. The Gaussian, or infinite approximation, wor
very well even for a small number of particles as soon as
energyE0 is not close to the edges of the band~the interval
@2N,N# for noninteracting spins!. Indeed, the Gaussian den
sity of states has infinitely long tails, while the exact one
sharply defined within@2N,N#. On the other hand, while
the support of the density function scales asN, its variance
depends onAN. It follows that the region close to the edge
becomes less and less important asN becomes large.

Let us briefly comment on Eq.~13!. Although it has been
obtained for a large number of particles, it neverthel
shows that, generally speaking, the single-particle ene
distribution for finite weakly interacting systemsis not nec-
essarily described by an exponential law. One can see tha
the latter occurs in a very strong limitN→`, provided that
uE0u@uhu,

n0~huE0!.exp~2b0h!, ~14!

where the temperatureT05b0
21 is defined via

b052
3E0

N21
5bmc1O~1/N!, ~15!

and E0,0. One should stress that, apart from the limitN
→`, the exponential distribution arises when the seco

FIG. 3. Single-particle energy distribution forN510 andJ50.
Full lines represent the exact distribution@Eq. ~12!# obtained from
the exact unperturbed density of states@Eq. ~10!#. Dashed lines are
the correspondent infinite approximations@Eq. ~13!# with a proper
normalization. Upper curves are forE0526, lower ones forE05
22.
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conditionE0@uhu;1 is fulfilled. Physically this means tha
the total energy must be larger than the typical single-part
energy, a condition naturally satisfied for a thermodynami
system.

Another important relation can be obtained from Eq.~12!.
Specifically, taking the derivatives of both sides of Eq.~14!
overh, and exchanging the derivative on the right-hand si
one obtains

2
d

dh
logn0~huE0!5

d

dE0
logr0~E02h,N21!, ~16!

One can see that in the limitN→` anduE0u@uhu, the right-
hand side coincides with the microcanonical definition of t
temperature, while the left-hand side shows that the o
possible exponential distribution should have a microcano
cal temperature.

We have thus found that in the noninteracting syste
when the number of particles becomes sufficiently large
the total energy of the system is larger than the typi
single-particle energy, themicrocanonical temperature@Eq.
~9!#, defined by the density of states, coincides with thesta-
tistical temperaturedefined directly from the SPE distribu
tion @Eq. ~11!#, which is the standard Boltzmann law. On
can then assume that if the interaction is sufficiently small
order not to change the previous results dramatically,
enough to produce ergodicity~from the equations of motion!,
Boltzmann’s law again results from taking a sufficient
large but finite number of particles.

Let us stress that in order to obtain these results, the
tion has been assumed to be fully ergodic on the unit
sphere. Rigorously speaking, this can be true, from the
namical point of view, only in the presence of interactionJ
Þ0. Indeed forJ50 the motion is foliated onto regular tor
and no ergodicity at all is allowed. Thus this ideal sp
model has been worked out following the traditional statis
cal mechanics picture, where the interaction is assumed t
sufficiently weak in order to apply noninteracting results, b
sufficiently strong in order to obtain ergodicity.

IV. MANY INTERACTING SPINS

A. Density of states

1. Infinitely strong interaction

Before switching to the interacting case, let us comp
the density of states in the presence of an infinitely stro
interaction~namely, formally settingB50). In this case the
density of states can be written as follows:

rV~E,N!5
]P~V<E!

]E
5

PS J(
i 51

N

Si
ySi 11

y <ED
]E

. ~17!

The central limit theorem can also be applied in this ca
keeping in mind that the normalized probability distributio
of the productz5xy of two uniformly distributed random
variablesx,y in the interval (21,1) is given by@20#

rV~E/J,1!52~1/2J!log~ uE/Ju!, ~18!
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so that the variance iŝz2&51/9. Equation~17! then becomes
~in the largeN limit !

rV~E,N!.
1

sV
2A2p

expS 2
E2

2sV
2 D , ~19!

with

sV
25

NJ2

9
. ~20!

Note that, even in this case, an explicit integral equation
be obtained for finite systems. Following the same steps a
Eq. ~10!, one obtains

rV~E,N!5E
2`

1`

dl e2 ilEFs~l!

l GN

, ~21!

wheres(l) is the sine-integral function defined by

s~l!5E
0

l

dx
sinx

x
.

2. General case

In the same way the density of states in the presenc
both the interaction and the ‘‘kinetic’’ term can be comput
by assuming thatH0 and V are independent. Indeed, let u
define

P~H01V<E!5E
2`

E

dE8r~E8!. ~22!

On the other hand, ifH0 and V are independent, their join
probability density function can be written as

rH0 ,V~E0 ,E!5r0~E0!rV~E!. ~23!

The probability density function of the sum of two indepe
dent random variables is thus given by@20#.

r~E!5E
2`

1`

dE8r0~E2E8!rV~E8!. ~24!

Substituting Eqs.~7! and~17!, and performing simple Gauss
ian integrals, one obtains

r~E,N!.
1

sA2p
expS 2

E2

2s2D , ~25!

where the variance

s25
N

3v
, v5

1

11J2/3
, ~26!

should be compared with Eq.~20!.
In Eq. ~25! there are two different approximations. Th

first one is the Gaussian form for the density of states, wh
is valid whenN→`. The second is the independence of t
~random! termsH0 andV which, of course, cannot be true i
general. For instance, a configuration with all spins align
n
in

of

h

d

along thez axis, for whichE05N, impliesV50. However,
if the motion is ergodic and the energy is not too close to
band edges, the second assumption can be considered
good approximation.

B. Classical analogs of quantum eigenstates and the LDOS

Another important relation can be obtained linking t
two quantities, theshape of the ‘‘eigenfunctions’’ ~SE! and
the local density of states~LDOS!, whose concepts were
motivated by quantum mechanics~see, for example, Refs
@3,21,8,6#!. The latter quantity, the LDOS, also known i
nuclear physics as thestrength function, is very important
when describing the spread of the energy initially conc
trated in a specific unperturbed state. The classical analog
these functions were introduced in Ref.@22#, and recently
applied to dynamical models in Refs.@8,21#. The very point
is that in the limit of N→` these two quantities can b
explicitly found, and a relation between them can be est
lished.

In the case of ergodic motion the classical analog of
SE can be defined as

WE~E0!5
]P~H0<E0uH01V5E!

]E0
. ~27!

Correspondingly, the classical analog of the LDOS is

wE0
~E!5

]P~H01V<EuH05E0!

]E
. ~28!

It is very important that both the SE and LDOS can be co
puted more efficiently@22# using the equations of motion
For the SE one has to choose a chaotic trajectory at s
fixed energyE, compute theH0(t) trajectory, and sample the
values of the unperturbed HamiltonianH0 along this trajec-
tory at some fixed time intervals. This procedure gives us
ergodic distribution inside theenergy shellconstructed by a
projection of the phase space ofH onto H0 ~see details in
Refs. @8,21#!. In the same way, the classical LDOS can
numerically computed taking a bunch of~regular! trajecto-
ries of the unperturbed HamiltonianH05E0, and computing
the correspondent spread ofH(t) along these unperturbe
trajectories. The sample of the values of the total Ham
tonian H(t), taken at given intervals of time, results in th
classical LDOS. Let us stress that even in the case of erg
motion of the total HamiltonianH, when only one single
trajectory is needed in order to obtain the SE, an ensemb
trajectories ofH0 is necessary in order to obtain a reliab
result for the LDOS. This is a consequence of the integra
ity of H0.

Alternatively one can choose, as indicated by definitio
~27! and ~28!, many different initial conditions on the sam
energy surface, and sum over them. It is clear that the
procedures~dynamical and taking the average over the ph
volume! should give the same result in the case of ergo
motion.

An important identity can be easily proven from relatio
~27! and ~28!. Let us write
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P~H01V<E,H0<E0!

5E
2`

E0
dE08 P~H01V<E,H05E08!

3E
2`

E0
dE08 P~H01V<EuH05E08!r0~E08!,

~29!

from which one can obtain the classical SE,

wE0
~E!r0~E0!5

]2P~H01V<E,H0<E0!

]E]E0
. ~30!

In the same way one can obtain the classical LDOS,

WE~E0!r~E!5
]2P~H0<E0 ,H01V<E!

]E0]E
. ~31!

From the above, the following relation emerges:

wE0
~E!r0~E0!5WE~E0!r~E!. ~32!

Let us stress that the previous identity does not depen
the Gaussian approximation, and that it takes dynamical
relations into account as well. This simple relation betwe
the classical SE and LDOS is very important in differe
applications. Remarkably, only unperturbed and pertur
densities of statesr0(E) and r(E) enter into this relation.
This allows one to relate the shape of eigenstates to tha
the LDOS in the corresponding quantum model, in a de
semiclassical region. In fact, a knowledge of these two fu
tions leads to a semiclassical approach, according to whic
is easy to detect quantum effects of localization; see de
in Refs.@3,6#.

It should be stressed that the classical SE and LDOS
essence, are ergodic measures for energy shells define
the projection ofH0 onto H ~and vice versa! in the energy
representation.

FunctionsWE(E0) andwE0
(E) can be considered as ke

nel operators transforming unperturbed quantities into t
ones, and vice versa. For instance, by integrating Eq.~32!
one has

r~E!5E dE0 wE0
~E!r0~E0!, ~33!

and the converse,

r0~E0!5E dE WE~E0!r~E!. ~34!

In a certain wayw andW each can be considered the inver
of the other. It is also easy to check that whenJ→0 then
WE(E0)5wE0

(E)5d(E2E0).
Assuming the Gaussian approximation for the densitie

states, and using Eq.~32!, we can easily obtain an analytica
expression for the classical SE,

WE~E0!5
1

sWA2p
expF2

~E02Ec!
2

2sW
2 G , ~35!
on
r-
n
t
d

of
p
-
it

ils

in
by

al

f

where

sW
2 5

NJ2

9
v ~36!

is the variance, andEc5vE is the center of the SE.
In order to obtain the LDOS distribution, one can u

relation ~32!, from which one obtains

wE0
~E!5

1

swA2p
expF2

~E02E!2

2sw
2 G , ~37!

where

sw
2 5

NJ2

9
. ~38!

It is interesting to note that the above distribution, in t
Gaussian approximation, coincides with Eq.~19!:

wE0
~E!5rV~E2E0!. ~39!

This relation can be also obtained independently, using
assumption of the independence ofH0 from V.

One can see that although the two Gaussians are diffe
for a weak interactionJ!1, and thenv;1, they appear to
be close to one another. This fact is of a general nature,
occurs in other models; see Refs.@22,21,7#.

On the other hand, this result shows that, strictly spe
ing, even in the case of ergodic motion, one should not
pect the SE and LDOS to be the same. As found above,
relation between the SE and LDOS is given by Eq.~32!. One
can obtain a very useful relation for the variances of the
and LDOS~valid in the Gaussian approximation only!,

sw
2

sW
2

5
s0

2

s2
. ~40!

We would like to stress again that both the SE and LD
have a proper meaning only in the case of ergodic motion
other cases they depend strongly on initial conditions and
the energy, thus not allowing one to use any statistical
proach.

C. Distribution of single-particle energies
and different temperatures

For N@1, the microcanonical temperatureTmc5b21 can
be defined from the total density of states@Eq. ~25!#,

bmc5
] log~r!

]E
52

3E

N
v, ~41!

with v51/(11J2/3). In fact, Eq.~41! determines thether-
modynamical temperature, since it establishes the relatio
between the temperature and total energy of a system. N
we are going to find thestatistical temperatureassociated
with the SPE distribution. First of all, let us note that, if th
variablesH0 andV are independent, the following approx
mate relation can be obtained:
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n~huE!5
dP~S1

z<huH01V5E!

dh

5E dE0 n0~huE0!WE~E0!. ~42!

Substituting Eqs.~13! and ~35! into Eq. ~42!, one obtains

n~huE!.expS 2
3Ec

2

2N~N2v !
2

3vh2

2~N2v !
1

3Ech

N2v D ,

~43!

where Ec5vE. Note that whenJ50, thenv51, and Eq.
~13! is recovered.

One can see that in the limitsuEu@uhu;1 andN@v the
SPE distribution can be approximated by the exponential
pendence

n~huE!;e2b(E)h, ~44!

where

b~E!52
3E

N
v5bmc . ~45!

The last equality, claiming that the statistical temperat
coincides with the thermodynamical one, is by no mea
trivial. On the one hand, the presence of strong interac
suggests some statistical equilibrium property, thus lead
to microcanonical predictions. On the other hand, we do
know if the single-particle description is valid since the i
teraction is strong. Even in the case when mean field
proach would be possible~in such a way that part of the
interaction actually becomes a single-particle energy!, the
single-particle distribution would depend on the mean fie
and there are no reasons to expect,a priori, that the Boltz-
mann distribution occurs with the same temperature as g
by the microcanonical ensemble.

Another way to find the statistical temperature which c
responds to the SPE distribution is as follows. First we n
that, in the presence of interaction, one has

E dh hn~huE!5ĒÞE; ~46!

this is different from the noninteracting case, for the lat
the obvious relation holds;

E dh hn0~huE0!5E0 . ~47!

Note that the SPE distribution in Eq.~46! depends on the
interaction; however, the ‘‘mean value’’ of the energy of a
particles does not correspond to the energy of a system.
very fact allows one to relate statistical effects of the int
action to an increase of the total energy~in application to
quantum systems, this approach was considered in R
@3,4,6#!.

Specifically, in order to find the SPE distributionn(huE)
from Eq. ~46!, one needs to know therenormalized energy

Ē. One can see that the Boltzmann distribution gives a c
rect result for an isolated system, if we take into account
e-

e
s
n
g
t

p-

,

n

-
e

r

is
-

fs.

r-
e

shift of the energyDE5Ē2E which is due to the interaction
between particles. In a sense, the~statistical! effects of the
interaction are absorbed by the increase of the energy
system, compared to the case of noninteracting partic
Therefore, pseudorandom interaction may be treated a
internal heat bath, thus giving rise to a statistical equilibriu

The shift DE can be found by assuming the absence
correlations betweenH0 and V in a way described above
One can show that

Ē5E dE0E0 WE~E0!5Ec , ~48!

whereEc5vE is the center of the classical SE, and the la
equality occurs in a strong limitN@1 using Eq.~35!. There-
fore, the shift is given by the relation

DE5Ē2E52
sw

2

s0
2

E52
J2

3
E. ~49!

It is important that the shift is defined by the widthsw of
the LDOS and by the width of the unperturbed density. O
should note that in a quantum representation, the variancesw

2

is defined by the sum of squared off-diagonal matrix e
ments. Therefore, this energy shift can be found without
agonalization of huge quantum Hamiltonian matrices. Us
this shift, one can find the temperature from Eq.~46! by
assuming the Boltzmann dependence forn(h).

Another way to obtain the temperature is via the unp
turbed density of states evaluated at the renormalized en
Ē:

b r5
d logr0

dE0
U

E05Ē

52
3Ē

N
. ~50!

Using the relation betweenĒ andE, one obtains

b r52
3Ē

N
52

3E

N
v5bmc . ~51!

Once again, we should remember that, apart from
limit N@1, the above relation is valid when neglecting t
correlations betweenH0 and V. However, the smaller the
number of particles, the larger the energy region where~dy-
namical! correlations will be important.

It is now interesting to find the increase of temperatu
DT5T2T0 due to the interaction, in comparison with th
temperatureT05b0

21 of the system with noninteracting
spins:

DT

T0
5

sw
2

s0
2

5
J2

3
. ~52!

One can see that the relative increase of temperature is g
in terms of the variance of the LDOS and the width of t
unperturbed density only@also see Eq.~49!#. This fact seems
to be generic; see the discussion in Refs.@3,6#.

A more accurate relation for the definition of temperatu
via the SPE distribution, without the assumption of t
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Gaussian form of the density of states, can be obtaine
follows. In close analogy to Eq.~16! one can write

n~euE!5
]P~S1

z<euH5E!

]e

5
1

r~E,N!

]P~S1
z<e,H5E!

]e
. ~53!

On the other hand, definingxi5Si
z , andyi5JSi

ySi 11
y it fol-

lows that

P~x1<e,H5E!

5E
2`

e

de8PS x15e8,x11y11(
i 52

N

xi1yi5ED
5E

2`

e

de8PS x15e8,y11(
i 52

N

xi1yi5E2e8D
5E dhE e

de8PS x15e8,y15h,(
i 52

N

xi

1yi5E2e82hD . ~54!

Owing to the independence of the three random variab
the joint probability density can be factorized, and one o
tains

n~euE!r~E,N!5r0~e,1!E dh rV~h,1!r~E2e2h,N21!.

~55!

Now defining now the ‘‘interacting’’ density of states

Ze~E!5E dh rV~h,1!r~E2e2h,N21!, ~56!

one obtains a relation similar to Eq.~16!:

2
]

]e
logn~euE!5

]

]E
logZe~E!. ~57!

Equation~57! states that if correlations can be neglecte
then a renormalized density of states must be introduce
order to obtain the ‘‘correct’’ temperature as obtained fro
the single-particle energy distribution. On the other hand
is clear that in the limitN→`, and uEu@1, we haveZe(E)
;r(E) and the usual definition is recovered. It is now inte
esting to apply our estimates to a system with a not v
large number of spins.

V. NUMERICAL DATA

A. Large number of spins

Let us first consider the model withN5100 spins. On the
one hand, this situation is far from the thermodynamic lim
on the other hand, the number of particles is quite large,
one can expect a good correspondence with analytical re
obtained in Sec. IV. In Fig. 4 two SPE distributions are pl
ted for different values of the total energyE. In both cases,
as

s,
-

,
in

it

-
y

;
d
lts
-

the trajectories have been found to be chaotic with posi
maximal Lyapunov exponents. For comparison, the anal
cal expression@see Eq.~43!#, obtained in the Gaussian ap
proximation, is shown. As one can see, the agreemen
fairly good. On the other hand, a direct comparison of
microcanonical temperaturebmc with the approximated tem
perature, obtained by fitting the SPE distribution by an e
ponent, gives different answers; see Fig. 5. In this figu
crosses represent the fitted inverse temperatures as a fun
of the total energy, while the dashed curve is the micro
nonical relation between the inverse temperature and the
ergy. In order to smooth fluctuations, the derivative has b
calculated performing local averages in small energy w

FIG. 4. Single-particle energy distributions forN5100 and
large interactionJ51, for different energy values. One single tr
jectory has been iterated for a given energy, up to a timet5106.
Numerical data should be compared with the analytical expres
@Eq. ~43!# obtained from the Gaussian approximation for the dens
of states. Circles stand forE5219, crosses forE527.

FIG. 5. Inverse temperatures vs total energy forN5100 andJ
51. Crosses are the extractedb f i t from the best fit of the SPE
distributions n(huE) to the exponential dependence. Typical e
amples of these distributions are given in Fig. 4. The dashed lin
the microcanonical relation@Eq. ~41!# found numerically from the
density of statesr(E). The full line is the theoretical prediction
obtained from Eq.~57! with e521. The dotted line is the Gaussia
approximation~see the text!.



ti

u

by
n
a

efi

e

by
ca

or
n

al
y

da
b
c
u
he

r
-
n
th
ar

on

u
o

xi
ai

ef
a

.
s

ry

w
o
e

of
ed

n-

ic
ribu-

m-

val-
ent
in

on
i-
a

ua-

n
e

PRE 62 6483CLASSICAL STATISTICAL MECHANICS OF A FEW- . . .
dows. A small, but systematic, difference between the sta
tical and microcanonical temperatures is clearly seen.

A much better agreement can be achieved by directly
ing ~instead of the total density of states! the renormalized
density@Eq. ~56!#. The corresponding result is presented
the full line. One can see quite good correspondence to
merical data for the statistical temperature. This result me
that Eq.~56! is more accurate than the usual statistical d
nition @Eq. ~41!#.

One can also introduce the effective~statistical! tempera-
ture by making use of Eq.~43!, keeping all terms in the
exponent. The temperature can be defined as a slop
ln n(huE) at the bottom of the energy spectrum,

b f i t5
d ln n~huE!

dh
5

3Ec

N2v
2

3vh

N2v
5

3v~E2h!

N2v
, ~58!

with h→21. The corresponding result is shown in Fig. 5
the dotted line. One can see that this dependence practi
coincides with both the fit to the actual distributionn(huE)
~crosses! and with the temperature determined by Eq.~56!
~full line!. This means that these two approximations c
rectly take into account both the dynamical correlations a
the finite number of particles.

We can conclude that, in spite of the relatively sm
number of particles, if compared with the usual thermod
namical systems of 1023 particles, our model ofN5100 in-
teracting spins can be approximately described by a stan
statistical approach which ignores dynamical correlations
tween particles. Indeed, the difference between the micro
nonical temperature and the approximate temperature, fo
by the fit of the SPE distribution close to the edge of t
energy spectrum, is quite small, and may be neglected
some cases. However, even for a relatively large numbe
spins, N5100@1, a clear influence of dynamical correla
tions and finite number of particles remains. However, o
should stress that in spite of a clear manifestation of
influence of dynamical correlations and finite number of p
ticles, the SPE distributionn(huE) for low energies can be
effectively described by the standard Boltzmann distributi
though with a renormalized temperature.

B. Chaos versus ergodicity

It is reasonable to think that a statistically stable distrib
tion would require a certain degree of chaoticity. But cha
itself, as indicated, for instance, by the positivity of the ma
mal Lyapunov exponent, is not enough in order to obt
equipartition among different degrees of freedom~see the
general discussion of this very important problem in R
@23#!. We have found such cases for a small number of p
ticles and an energy close to the center of the spectrum

It is instructive to work out a specific example. Let u
consider a system ofN54 spins. ForJ5B51 and energy
E* 521.9745, the single-particle energy distribution is ve
different from the phase average distribution~obtained with
many different initial conditions in a small energy windo
close toE* ); see Fig. 6. Nevertheless, the Lyapunov exp
nent is positive for many initial conditions inside the sam
energy window.
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This lack of ergodicity is also reflected in the lack
equipartition. Indeed, defining the average unperturb
single-particle energy as

^Si
z&5 lim

T→`
E

0

T

dt Si
z~ t !, ~59!

we obtain that, typically, for trajectories with energyE close
to E* , neighbor spins do not share the same energy~lack of
equipartition!. In Table I, we show the average kinetic e
ergy per spin for a dynamical trajectory with the energyE*
~second column!, to be compared with the average kinet
energy per spin as obtained from the phase average dist
tion ~right column! within the energy rangeDE5@21.98,
21.97#.

C. Ergodicity versus dynamical correlations

In this section we deal with systems having a small nu
ber of spins~let us say, on the order of ten!. In contrast to the
case considered in Sec. IV, we select only those energy
ues which correspond to both a positive Lyapunov expon
and to equipartition among different spins; this means,
particular, that ‘‘dynamical’’ and ‘‘statistical’’ distributions
~the former obtained by integration of equations of moti
for one trajectory, the latter by choosing many different in
tial conditions onto the energy surface and performing
phase average! are close to one another.

FIG. 6. Single-particle energy distribution forN54 andJ51.
The dashed line is obtained dynamically, by integrating the eq
tions of motion for a single trajectory with energyE* 521.9745 up
to the timet5107. The full line is the phase average distributio
obtained for 106 different initial conditions in the energy rang
@21.98,21.97#.

TABLE I. Average kinetic energy per spin.

Spin labeli ^Si
z(E* )& ^Si

z(DE)&

1 20.7248 20.3783
2 20.1387 20.3788
3 20.7248 20.3788
4 20.1388 20.3801
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Let us focus on two different samples ofN55 and 10
interacting spins with strong and chaotic interactionsJ
51). In Figs. 7 and 8 we show the SPE distribution f
different energies, together with the correspondent Gaus
approximations@Eq. ~43!#.

The first important point is a remarkable deviation fro
the Gaussian approximation, at least for energy valueE
close to the band edge. This simply means that the appr
mations involved in order to obtain Eq.~43! are no longer
valid. One of these approximations was to consider a Ga
ian shape for the SE in Eq.~42!. According to additional
data, effective SE’s~statistical or dynamical, they are ver
close to each other! for the same energy value show remar
able deviations from the Gaussian. Nonetheless, the su
tution of the ‘‘true’’ SE in Eq.~42! does not affectn(huE)
considerably. This amounts to saying that Eq.~42! itself does
not constitute a good approximation for energy values cl
to the edges.

Indeed, due to the small number of spins, and to the r
tively large energy shared by each spin particle, they

FIG. 7. Single-particle energy distributionn(huE) for N55,
with interactionJ51 as a function of the single-particle energyh.
Different symbols indicate different energy valuesE, as shown in
the window. For a few sets of symbols the Gaussian approxima
as given by Eq.~43!, is also shown.

FIG. 8. The same forN510.
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strongly correlated, and most of the uncorrelation assum
tions ~betweenH0 andV, for example! made in the previous
sections are no longer valid.

To be more precise, it can be shown that Eq.~42! can be
considered as the ‘‘diagonal’’ approximation of the exa
relation

n~huE!5E dE0 WE~E0!nE~huE0!, ~60!

where

nE~huE0!5P~S1
z5huH05E0 ,H5E!. ~61!

In the limit whenH andH0 are independent one recovers E
~42!, sincenE(huE0)5n0(huE0). The study of the correla-
tion kernel @Eq. ~61!# beyond the diagonal approximatio
will be reserved for future investigations.

On the other hand, in the middle of the energy banduEu
;0 there is a rough agreement with the Gaussian appr
mation ~see Fig. 7!. Indeed, for such energy values, there
no preferred direction of the spin~the energy shared by eac
single spin is relatively small!, and Eq.~42! still represents a
good approximation. However, the bad point is that, close
the center of the band, the Gaussian approximation
n(huE) is far from an exponential@in fact, it is close to a
Gaussian, see Eq.~43!#. Indeed, let us remember that one
the conditions for obtaining the Boltzmann distribution w
uEu@1, which is of course not satisfied at the center of t
energy spectrum.

Even if not completely satisfactory from the theoretic
point of view, but in close analogy with the case ofN
5100 spins, one could define a temperature as~minus! the
slope of the fitting straight line to logn(huE). Operatively we
observe that in the region to the left of their intersecti
point (h;20.6 for N55 andh;20.7 for N510), distri-
butions with different energy values have a behavior clo
to that of an exponential. Therefore, it is natural to fit t
numericaln(huE) with an exponential only to the left of the
intersection point. Let us callb f i t the inverse temperatur
obtained in this way.

Needless to say, when compared with both the statist
and microcanonical temperatures, one can see importan
viations. In Figs. 9 and 10 we plot the obtainedb f i t as a
function of the energyE, together with other definitions o
temperature forN55 and 10.

As one can see, none of the previous definitions seem
fit the numerical values. This is not surprising, in spite of t
fact that only an approximate exponential behavior has b
found. We do not have any approximate theory able to
scribe such temperature differences when the numbe
spins is small. Strictly speaking, one recognizes the imp
tance of the classical SE in the description of the behavio
single-particle distribution, but it becomes technically co
plicated to go beyond the diagonal approximation, which
correct only when the number of particles is sufficien
large and the energy is not too close to the ‘‘many-bo
ground state’’~bottom of the energy spectrum!.

The following approximate phenomenological scaling
lation has been found numerically:

bs52
3^E&

N
2

~11a!J2

N
, ~62!

n,
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where a50.7 is the fitting parameter and^E&
5*dh hn(huE) . In Fig. 11 for differentN, J, and energyE,
we show the numerical data and the scaling relation@Eq.
~62!#.

For the time being, we have no theoretical explanation
this scaling relation. It should be stressed that, in the li
N→` and sufficiently large energŷE& the second term on
the left-hand side of Eq.~62! is negligible with respect to the
first one, and Eq.~51! is recovered. We point out that it is no
possible to takeJ@1 in this model, since it becomes inte
grable, and most of the previous results are necess
wrong.

The disagreement between the microcanonical temp
tures and the statistical one for a small number of partic
has few important theoretical implications. First, we no
that they are obtained in two completely different way
While the single-particle distribution reflects a property
the constant energy surfaceH5E, the microcanonical defi-
nition requires a derivativeacross the energy surface. In

FIG. 9. Comparison between different definitions of temperat
for N55. Symbols represent the numerically extractedb f i t , while
different curves refer to different definitions of temperature,
microcanonical approximation~full line!, and the Gaussian approx
mation~dotted line!. Since the latter also turns out to be depend
on h, we computed it ath521.

FIG. 10. The same forN510 spins.
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principle, the knowledge of the correlation kernel@Eq. ~61!#
would solve the problem completely. But this in turn r
quires a knowledge of the~infinite! intersections among the
H5E andH05E0 surfaces.

VI. CONCLUDING REMARKS

In this paper we have studied the emergence of Bo
mann’s law for the single-particle energy distributionn(huE)
in a isolated dynamical model of a finite number of intera
ing spins. In the limit of a very large number of spins, th
model allows for an analytical treatment. We have sho
that in this strong limit, Boltzmann’s distribution, indee
occurs with an effectivestatistical temperature which coin-
cides with that defined by the standardmicrocanonical tem-
perature. The latter is defined via the total density of state
Since our analytical proof is also valid for a strong sp
interaction, it is far from trivial. Indeed, it is nota priori
clear that the SPE distribution, which pertains to a nonint
acting property, follows the Boltzmann distribution with th
temperature determined via the total density of states.

The above result has been obtained in an approach w
is very similar to that recently suggested in the study of
so-calledtwo-body random interaction model@2–4#. Accord-
ing to this approach, the distribution of occupation numb
for single-particle levels in a quantum many-body system
directly related to the average shape of chaotic eigenstate
the basis of the unperturbed Hamiltonian~the latter can be
considered as the mean-field part of a system!. This means,
in fact, that there is no need to know exact eigenstates
huge Hamiltonian matrices which take into account tw
body interaction between particles. This is due to the cha
nature of eigenstates, which results from the~assumed! ran-
domness of the two-body matrix elements.

An important point of the above approach is that in so
cases the average shape of eigenstates can be found an
cally from off-diagonal matrix elements of the total Ham
tonian H0; see Refs.@3,5#. The same happens to anoth
important quantity, thestrength function, which in solid state

e

t

FIG. 11. b f i t obtained by fitting the single-particle energy di
tribution in the negative part of the single-particle spectrum, vs
proposed phenomenological scalingbs . Full circles represent the
numerical data forN54, 5, 10, 20, and 100 andJ50.1, 0.5, and 1,
and different energy. The full line is the scaling relation.
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physics is also known as thelocal density of states~LDOS!.
These two quantities are related to each other; howeve
far this relation is not well studied. Numerical data for d
ferent models, both disordered@3# and dynamical@21,8#,
have shown that for not very strong interaction, these t
quantities are very close to one another. Knowledge of
LDOS is very important in many applications. Indeed it pr
vides information on how energy, initially concentrated in
specific unperturbed state, spreads over all other states d
the interaction between particles. The inverse width of
LDOS is, in fact, the effective time of this spread.

Until recently, the above two quantities were discuss
only in the context of quantum systems. On the other ha
in Ref. @22# it was noted that both LDOS and SE have ve
clear classical analogs. The study of theclassicalLDOS and
SE were begun in Refs.@21,8#, and the first results showe
that the average shape of quantum eigenstates~and the same
for the LDOS! for chaotic eigenstates coincides fairly we
with the classical counterpart. For this reason, when study
the occurrence of Boltzmann distribution in our model
interacting spins, we have also paid attention to the class
LDOS and SE.

Our results in what concerns classical SE and LDOS h
shown a nice correspondence with the main findings fo
quantum model with random two-body interaction@3,4,6#. In
particular, in our classical model we have proved the ba
expressions for an increase of both total energy@Eq. ~49!#
and temperature@Eq. ~52!# due to statistical effects, which in
a quantum model were derived directly from the shape
exact eigenstates in the unperturbed energy basis. More
additional relations@Eqs. ~32! and ~40!# have been found
which may also be important in quantum systems.

Numerical data for our model have confirmed the m
theoretical predictions for a large number of particles,N
5100. However, it was also found that in spite of a relative
large N, one can detect clear deviations for the statisti
,’’
ar
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to
e

d
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g
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al
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f
er,

l

temperature related to the SPE distribution. Detailed anal
shows that these deviations are mainly due to dynamica
fects of correlations originating from a finite number of pa
ticles. As shown, analytical results can be interpreted a
‘‘diagonal’’ approximation, neglecting correlations betwee
the total Hamiltonian and the unperturbed Hamiltonian. O
should stress that corrections to the thermodynamical exp
sions are not only on the order of 1/N, as commonly assume
in the literature, but depend on the interaction strength
well.

Drastic deviations from the thermodynamical approa
have been found for two interacting spins (N510 and 5!.
Both the thermodynamical temperature defined from the
crocanonical relations, and the statistical temperature fo
analytically for a very largeN, are very different from the
approximate temperature. The latter has been determined
merically from the Boltzmann dependence of the SPE dis
bution, used as a fitting expression for low energies of
system. A phenomenological expression has been fo
from the analysis of the data, but without a proper analyti
explanation. These problems, as well as the development
semiquantalapproach for which a quantum distribution o
occupation numbers is computed with the use of a class
analog of the shape of the eigenstates, will be a subjec
future investigations.
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